Skip to content
Search

Latest Stories

Occludin protein facilitates coronavirus spread in humans: Study

The findings hold promise for the development of future antiviral drugs aimed at targeting this protein and disrupting the spread of the coronavirus

Occludin protein facilitates coronavirus spread in humans: Study

Researchers from the University of Missouri, USA, have made a significant breakthrough by identifying occludin, a specific protein within the human body, as a crucial facilitator of coronavirus spread from cell to cell following infection.

The study, published in the journal Proceedings of the National Academy of Sciences, highlights how this protein acts as a mediator for the transmission of the virus between cells.


These findings hold promise for the development of future antiviral drugs aimed at targeting this protein and disrupting the spread of the coronavirus.

"This basic, scientific research is very important to better understand the underlying mechanisms of disease progression inside the body's cells so that the proper countermeasures can be identified and developed," said Wenjun Ma, an associate professor at the university and lead author of the study.

In their investigation of the coronavirus's cell-to-cell spread, the research team conducted a thorough analysis of cell samples. Their findings revealed that when the occludin protein within a single cell is compromised by the virus, it accelerates viral replication and facilitates the rapid transmission to adjacent cells within the body.

Consequently, this process exacerbates the infection and increases the likelihood of more severe symptoms.

The team emphasised the potential significance of this knowledge for the development of antiviral drugs.

By exploring the impact of antiviral medications on fortifying the occludin protein against infection, researchers aim to leverage this understanding to improve treatment strategies and potentially mitigate the virus's spread, Ma said.

Extensive analysis of cell samples by the research team has shed light on the intricate process of coronavirus transmission between cells. They discovered that while the virus initially infects a single cell, the complexity of cellular structures becomes evident as the occludin protein within the cell becomes damaged. This damage triggers rapid viral replication and facilitates the spread to neighbouring cells.

Ma stated, "For example, if only one cell in the lungs is infected at first, the ability to breathe may not be significantly impacted. "However, once the virus spreads to neighbouring cells throughout the lungs, it can lead to difficulty breathing and other respiratory problems.”

In the future, Ma intends to expand the scope of research by investigating the potential impact of other viral infections on the occludin protein. This endeavor aims to enhance our understanding of how various viruses interact at the cellular level with their host organisms.

(PTI)

More For You

Mohua Chinappa

She believes her work is shaped by a single purpose: giving voice to those who have been unheard for far too long

Mohua Chinappa

Mohua Chinappa on why homemakers, their unseen labour, and midlife reinvention can no longer be ignored

Highlights

  • Mohua Chinappa says advocacy for homemakers and marginalised women drives her work
  • She calls unpaid domestic labour a long-ignored injustice in Indian households
  • Chinappa describes midlife as a moment of freedom, not decline, for South Asian women

Writer, podcaster and advocate Mohua Chinappa says the stories that matter most to her are those that rarely make it into the spotlight. From homemakers to queer communities, she believes her work is shaped by a single purpose: giving voice to those who have been unheard for far too long.

Speaking in a recent conversation, Chinappa draws directly from her own life to explain why the quiet labour of women, especially homemakers, needs urgent recognition.

Keep ReadingShow less